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Abstract

Both biological and artificial neural networks inherently balance their perfor-
mance with their operational cost, which characterizes their computational abili-
ties. Typically, an efficient neuromorphic neural network is one that learns rep-
resentations that reduce the redundancies and dimensionality of its input. For in-
stance, in the case of sparse coding, sparse representations derived from natural
images yield representations that are heterogeneous, both in their sampling of in-
put features and in the variance of those features. Here, we focused on this notion,
and sought correlations between natural images’ structure, particularly oriented
features, and their corresponding sparse codes. We show that representations of
input features scattered across multiple levels of variance substantially improve
the sparseness and resilience of sparse codes, at the cost of reconstruction per-
formance. This echoes the structure of the model’s input, allowing to account
for the heterogeneously aleatoric structures of natural images. We demonstrate
that learning kernel from natural images produces heterogeneity by balancing be-
tween approximate and dense representations, which improves all reconstruction
metrics. Using a parametrized control of the kernels’ heterogeneity of a convolu-
tional sparse coding algorithm, we show that heterogeneity emphasizes sparseness,
while homogeneity improves representation granularity. In a broader context, this
encoding strategy can serve as inputs to deep convolutional neural networks. We
prove that such variance-encoded sparse image datasets enhance computational ef-
ficiency, emphasizing the benefits of kernel heterogeneity to leverage naturalistic
and variant input structures and possible applications to improve the throughput of
neuromorphic hardware.

Keywords: Sparseness; Vision; Heterogeneity; Efficiency; Coding; Representa-
tion; Deep Learning

1



1 Introduction
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Figure 1: Efficient coding of sensory inputs. (a) Orientation distributions with high
(red) and low (blue) variance, in two 2562 pixel patches from a sample natural image.
(b) The best strategy to represent these distributions efficiently depends on the struc-
ture of the input. The high-variance patch can be accurately represented with multiple
oriented kernels, or approximated using one single kernel with high representational
variance. Similarly, the low-variance patch can be encoded as a two-peaked orientation
for an accurate representation, or using one kernel of low representation variance for a
higher sparseness.

Neuromorphic neural networks are fundamentally designed to process inputs based
on their statistical characteristics. This is particularly evident in vision tasks related to
natural images, which exhibit a set of common statistical properties at multiple levels
of complexity [1]. These statistical characteristics guide sensory processing, and are
implicitly learned through efficient coding models [2, 3]. For example, natural images
typically show a local redundancy in luminance patterns that biological neural network
remove at early processing stages, enhancing computational efficiency [4]. More gen-
erally, these images can be conceptualized as distributions of features (Figure 1), which
are, at a low descriptive level, oriented edges that form the foundation of hierarchical
representations of natural images [5]. The first moment of these distributions informs
on the mean orientation in a given image patch, while the second central moment rep-
resents the heterogeneity of these features.

Modeling of such heterogeneity is crucial for sensory processing, both through input
and representation bound variances [6]. Input variance, also referred to as aleatoric
variance, stems from the intrinsic stochasticity in the processes that generate natural
sensory inputs, such as sounds [7], textures [8] or images [9]. As its sources escape
modeller control, it is challenging to predict, especially in computer vision models [10]
or neuromorphic hardware [11], and mandates a robust approach to accurately represent
and process naturalistic inputs.

Evidence from neurobiological networks support the notion that neural systems ac-
count for this variance in decision-making processes [12], following Bayesian-derived
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rules [13]. In practice, this is supported through the variability of neuronal sparse activa-
tions [14], which depend directly on the variance of the input [15, 16]. This relationship
ties input variance to representational variance : in feature space, the basis function of a
neuron is intrinsically linked to its capacity to encode particular levels of aleatoric vari-
ance [17]. Neurons with broad kernels will more effectively encode broadly represented
elements in orientation space, such as textures (see Figure 1). This neurobiological ev-
idence can notably serve to ”explain away” irrelevant input to neural networks, thereby
optimizing neuromorphic designs at the hardware level.

Indeed, neuromorphic machine learning models which emulate the visual system,
such as sparse coding, exhibit a dictionary of kernels which possess a wide range of
tuning heterogeneity [3]. This heterogeneity is particularly notable in convolutional
models, where feature activations, being both position- and scale-invariant, effectively
mirror the aleatoric structure of natural images. This process is akin to maximum like-
lihood estimation, wherein modeling visual inputs involves capturing the variance of
visual features through parametrized surrogate distributions. Thus, sparse coding, with
its minimalistic yet effective neuromorphic approximation of the early visual system,
provides a valuable theoretical framework for understanding how input variance is tied
to representational variance.

Here, we aim to provide an empirical account of this relationship, namely by show-
casing the advantages of incorporating kernels with heterogeneous feature represen-
tations in sparse coding models of natural images. Rather than performing L1-based
pruning that is agnostic to feature spaces, we use a convolutional sparse coding model
and manipulate the heterogeneity of its kernels to study its reconstruction performances.
By training this model to reconstruct a novel dataset of high-definition natural images,
we show that optimal learning relies on balancing the heterogeneity of features. This
not only reflects the aleatoric variance in natural images, but also the heterogeneity of
the variances that are constructed in the dictionary. In a general context, we provide
a full PyTorch implementation of our convolutional sparse coding algorithms, and use
these codes as inputs of a deep convolutional network, boosting resilience to adversarial
input degradation. This underscores our finding that inherent heterogeneity of kernels
in machine learning, akin to that of receptive fields in biology, enhances computational
efficiency by effectively mirroring the statistical properties of inputs.

2 Methods

2.1 Convolutional Sparse Coding
Sparse coding (SC) is an unsupervised method for learning the inverse representation
of an input signal [18]. Given the assumption that a signal can be represented as a linear
mixture of kernels (or basis functions), SC aims to minimize the activation of kernels
used to represent the input signal, yielding an efficient representation [19] that can be
inverted for reconstruction. Here, SC was used to reconstruct an image s from sparse
representations x, while minimizing the ℓ1-norm of the representation:

argmin
x

1

2
||s−Dx||22 + λ||x||1 (1)
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where D is the set of kernels used to represent s (called a dictionary) and λ a regulariza-
tion parameter that controls the trade-off between fidelity and sparsity. Conveniently,
this problem can be efficiently approached with a Basis Pursuit DeNoising (BPDN) al-
gorithm [20]. As there is a priori no topology among elements of the dictionary, SC
does not preserve the spatial structure of the input signal, which can be problematic in
the context of the representation of natural images. Moreover, the overall decompo-
sition is applied globally and handles poorly the overlap between redundant statistical
properties of patches in the image [1], yielding a suboptimal representation of the input
signal [21].

These problems are alleviated by Convolutional sparse coding (CSC), an extension
of the SC method to a convolutional representation, which is closer to a rough neurally-
inspired design [22] as used in deep convolutional network (CNNs) [23]. These CNNs
use localized kernels similar to the receptive fields of biological neurons in the primary
visual cortical areas. A convolutional architecture uses convolutional kernels (dictio-
nary elements) that are spatially localized and replicated on the full input space (or
possibly with a stride which subsamples that space). The number of kernels in the
dictionary defines the number of features, or channels. In CSC, the total number of
kernels with respect to standard SC is multiplied by the number of positions. As a re-
sult, a convolution allows to explicitly represent the spatial structure of the signal to be
reconstructed. This further reduces the number of kernels required to achieve an effi-
cient representation of an image, while providing shift-invariant representations. CSC
extends equation (1) to:

argmin
{xk}

1

2
||s−

K∑
k=1

dk ∗ xk||22 + λ
K∑
k=1

||xk||1 (2)

where xk is a N2 dimensional coefficient map (given a N2 sized image), dk is one kernel
(among K channels) and ∗ is the convolution operator. As the convolution is a linear
operator, CSC problems can be solved with convolutional BPDN algorithms [24]. Here,
we used the Python SPORCO package [25] to implement CSC methods, using an Alter-
nating Direction Method of Multipliers (ADMM) algorithm [26] which splits Convolu-
tional Sparse Coding problems into two alternating sub-problems, as described in Ap-
pendix A. Additionally, CSC proves advantageous over other reconstruction techniques
in its ability to learn interpretable and visualizable kernels from input data. Therefore,
only CSC will be used in further sections.

2.2 Dictionaries
Optimal dictionaries to reconstruct natural images are known to be localized, oriented
elements [27, 2]. Here, we utilized log-Gabor filters, which have been shown to ac-
curately model the receptive fields of neurons in the visual cortex. These filters have
several advantages compared to Gabor filters, notably that they do not have a DC com-
ponent and that they optimally capture the log-frequency structure of natural images
to ensure their optimal reconstruction [28]. The log-Gabor filter [29] is defined in the
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frequency domain by polar coordinates (f, θ) as:

G(f, θ) = exp

(
−1

2
· log(f/f0)

2

log(1 + σf/f0)2

)
· exp

(
cos(2 · (θ − θ0))

4 · σ2
θ

)
(3)

where f0 is the center frequency, σf the bandwidth parameter for the frequency, θ0 the
center orientation and σθ the standard deviation for the orientation. This provides with a
parametrization of the dictionary, which is useful to compare the efficiency of different
sparse coding models [30]. We kept f0 = σf = 0.4 cpd, varying only the orientation-
related parameters to build the dictionaries. The angular bandwidth Bθ of the log-Gabor
filter, expressed in degrees, was defined as Bθ = σθ

√
2 log 2 [31].

To titrate the impact of including heterogeneity in the dictionary, we created two
log-Gabor dictionaries with the same number of channels, one with homogeneous (a
single σθ) the other with heterogeneous (multiple σθ) variance of representations. We
compared these dictionaries before and after fine-tuning on the dataset, using a dictio-
nary learned from scratch over the dataset as a fifth reference. Such learning was done
by performing convolutional sparse coding in a multi-image setting:

argmin
{xk,j}

1

2

J∑
j=1

||
K∑
k=1

dk ∗ xk,j − sj||22 + λ
K∑
k

J∑
j

||xk,j||1 s.t. ∀k, ||dk||2 = 1 (4)

where sj is the j-th image in the dataset and xk,j is the coefficient map for the k-th filter
and the j-th image. This was alternated with an optimization step of the dictionary:

min
D

N∑
i=1

1

2
∥xi −D ∗ zi∥22 (5)

subject to the constraint |dk|2 ≤ 1 for k = 1, . . . , K.
Performance of these dictionaries was measured with two metrics. The peak signal-

to-noise ratio (PSNR), a common metric to evaluate reconstruction quality of grayscale
images, is defined as:

PSNR(I1, I2) = 20 · log10(max(I1))− 10 · log10

(
1

m · n

m∑
i=1

n∑
j=1

(I1 − I2)
2

)
(6)

where max(I1) is the maximum pixel intensity of the source image. The right hand-
side term of the PSNR is the log10 of the mean squared error, where I1 and I2 represent
the pixel intensity in the source and reconstructed images, respectively. Given that
the natural images used here are encoded on 8 bits, common values of PSNR range
between 20 (worst) to 50 (best) dB. We also measured the sparseness of the algorithm,
which was defined as the fraction of basis coefficients used in a reconstruction which
are equal to zero. This value is between 0 (no zero coefficient) and 1 (all coefficients
are zero). Parametrization of the algorithm was chosen to balance sparseness and PSNR
(Appendix A), i.e. λ = 0.05, with 750 iterations of the learning phase, a residual ratio
of 1.05 with relaxation at 1.8, and dictionaries with K = 144 total elements of 122

pixels each.
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2.3 Histogram of oriented gradients
The distributions of oriented features in Figure 1 were computed using a histogram
of gradient orientations. Using the ‘scikit-image‘ library [32], given an input image I
of dimension M × N , two gradients were computed at each pixel using Sobel filters
Gh(x, y) and Gv(x, y), respectively, for vertical and horizontal gradients. The maps of
the magnitude Gm and direction θ were then given as:

Gm(x, y) =
√

Gh(x, y)2 +Gv(x, y)2

θ(x, y) = arctan 2(Gv(x, y), Gh(x, y))
(7)

The range of possible gradient directions over [0, π] was divided into 18 bins. The
orientation histogram H for each bin b was computed as:

H(b) =
∑
(x,y)

Ib(θ(x, y)) (8)

where Ib is an indicator function, ranging from 1 if θ(x, y) falls within the range of
the bin b and 0 otherwise. In that context, one can quantify the orientation content
in natural images, then estimate the distribution of oriented features within the input:
aleatoric variance can then be approximated as the inverse of the squared variance of
this distribution in orientation space and is computed as Varcirc = 1 −

√
X̄2 + Ȳ 2,

where X̄ and Ȳ are the average cosine and sine values respectively, yielding a scalar
value between 0 (lowest orientation variance) and 1 (highest).

2.4 Dataset
Images for the CSC sections were captured using either a Canon EOS 650D or Canon
EOS 6D camera, fitted with 28mm lenses. A total of 1145 images were collected at a
resolution of at least 5184 × 3456 pixels. For CSC, we extracted and used the central
256 × 256 pixel segment of each image. These images represent a variety of dynamic
scenarios, and were carefully shot to ensure that the subjects of interest were in fo-
cus and entirely within the frame. We have made this dataset publicly available on
Figshare [33].

2.5 Image classification using deep learning
To evaluate the role of sparse codes obtained, we decided to go further than only measur-
ing representation performance by applying these codes on a common machine learning
task: image classification. To perform such classification in a neuromorphic-inspired
setting, we utilized a modified version of the CIFAR-10 dataset. This dataset, which
is commonly used for image classification, originally contains 60, 000 color images of
32× 32 pixel resolution across 10 balanced classes. We processed these images by first
upscaling them to 128 × 128 resolution via bilinear interpolation. Subsequently, they
were converted to grayscale and sparse-coded, as described above.

The dataset was divided into a training set containing 50, 000 sparse codes and a
test set comprising 10, 000 sparse codes. The network was trained from scratch through
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a standard PyTorch implementation, with backpropagation of the gradient using the
Adam optimizer [34]. The training objective was to minimize the categorical cross-
entropy loss, defined as:

J(θ) = − 1

N

N∑
i=1

C∑
j=1

yij log(ŷij) (9)

where N is the number of samples, C is the number of classes, yij is the true label, and
ŷij is the predicted label.

The sparse codes representing these images were then used as inputs for an adapted
ResNet-18 architecture [35] which is a classically used CNN architecture. This deep
residual neural network, typically composed of 18 layers and used for various vision
tasks, was adapted to process the 144 dimensions of the sparse-coded inputs instead of
the standard 3-channel (RGB) format. This dimensionality corresponds to the number
of channels in our sparse coding dictionary. No other modifications were implemented
in the network architecture design.

Hyperparameters were tuned via grid search to maximize accuracy on heteroge-
neous variance codes, with the resulting values: η = 2e − 4, m̂t = 0.9, v̂t = 0.99,
ϵ = 1e − 08. When training the network, CSC methods using ADMM algorithms
were ported from SPORCO to a custom PyTorch implementation (available at https:
/github.com/hugoladret/epistemic_CSC) to speed up computations.

3 Results

3.1 Heterogeneous kernels improve the sparseness of natural im-
ages representations

We explored how variance in sensory inputs and neuromorphic representations con-
trols the encoding strategies of natural images. We compared five distinct convolutional
sparse coding dictionaries of similar sizes. Two dictionaries using Log-Gabor filters
were constructed : one with a homogeneous level of orientation variance (Bθ = 12.0°)
and 72 orientations θ0 ranging from 0° to 180° (Figure 2a, green) compared to an-
other one with heterogeneous orientation variance, spanning 12 orientation values θ0
and six Bθ ranging from 3° to 30° (Figure 2b, blue). We then benchmarked these con-
structed dictionaries against their learned counterparts, which were fine-tuned on the
dataset (Figure 2a, orange; b, purple). A final comparison was made against a ran-
domly initialized dictionary learned de novo on the same dataset (Figure 2c, black).
Performance evaluation across the 1, 445 high-definition natural images revealed that
dictionaries initialized with Log-Gabor filters consistently displayed highly variant per-
formance from image to image (Figure 2d). Prior to learning, the dictionary integrating
heterogeneous orientation variance outperformed its homogeneous counterpart in spar-
sity (Mann-Whitney U-test, U = 1310760.0, p < 0.001), but had significantly lower
PSNR (U = 262261.0, p < 0.001). Post-learning, all dictionaries had similar perfor-
mances in terms of both sparsity (U = 634605, p = 0.18 for homogeneous vs random
initialized dictionaries ; U = 634605.0, p = 0.97 for heterogeneous vs random initial-
ized dictionaries) and PSNR (U = 694175, p = 0.46 ; U = 653943.0, p = 0.99). This
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Figure 2: Kernel heterogeneity and reconstruction trade-off. (a) Elements from dictio-
naries with homogeneous kernel variance before (green) and after dictionary learning
(orange). (b) Same, with heterogeneous kernel variance before (blue) and after learn-
ing (purple). (c) Elements from a dictionary learned from random initialization on the
dataset. (d) Distribution of the sparseness (top) and Peak Signal-to-Noise Ratio (PSNR,
right) of the five dictionaries. Median values are shown as dashed lines. All three post-
learning dictionaries have overlapping (but not identical) distributions.

suggests that emphasis on heterogeneous variance modelling improves the sparsity, at
the cost of reconstruction performance.

After learning from the dataset, whether from random initialization or from a pre-
constructed log-Gabor dictionary, all dictionaries converge to qualitatively quite differ-
ent filters, yet with a similar, superiorly sparse and performant form of encoding. The
learning method indeed enhanced all Log-Gabor dictionaries, resulting in increased
PSNR (U = 0.0, p < 0.001 ; U = 181535.0, p < 0.001, homogeneous and hetero-
geneous variance dictionaries, compared to their pre-learning version) and sparseness
(U = 23595.0, p < 0.001 ; U = 248667.0, p < 0.001). Given the converging recon-
struction and sparseness for all these dictionaries, we now focus on the heterogeneous
variance dictionary, both pre- and post-learning, as well as the pre-learned homoge-
neous variance dictionary. Additional performance details for the homogeneous dictio-
nary are provided in Appendix B.

What are then the kernel features changed through the learning process? While fine-
tuned dictionaries do incur a significantly higher computational cost during the learning
phase, they deliver substantial improvements in both PSNR and sparsity, compared to
merely introducing heterogeneous variance into a pre-existing dictionary. These en-
hancements can be attributed to modifications in the dictionary coefficients following
the learning phase, affecting both the feature orientations (θ0) and their associated lev-
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of the pre-learning encoding) is represented as a gray dashed line. (c) Example images
from the dataset. (d) Sparse code for high Bθ values (color coded by each coefficient’s
θ) and reconstructions for the pre-learned, heterogeneous variance dictionary. (e) Same
as (d), for post-learned, heterogeneous variance dictionary. Orientation color code of
the coefficients is shown on the rightmost coefficient map.

els of variance (Bθ) (Figure 2a). Specifically, learning from a dataset of natural images
introduced a bias toward cardinal orientations (Figure 3a), mirroring inherent biases
found in natural scenes [36], which is in contrast to the uniformly distributed initial
dictionary. Furthermore, the learning process resulted in a non-uniform distribution of
coefficients across multiple levels of orientation variance (Figure 3b). Notably, coef-
ficients that were previously inactive (i.e., sparseness = 1) became activated at higher
Bθ levels (Figure 3c-e). This led to consistent patterns in coefficient distribution across
heterogeneous variance levels (Figure 3d,e). This uniformity is likely influenced by
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the dataset’s inherent variability. Consequently, the performance gains attributed to the
learning process are contingent upon feature orientation biases (θ0) and a redistribution
of the levels of variance (Bθ), both of which should be reflective of the dataset’s intrinsic
structure.

3.2 Statistical properties of natural images reflect the variance of
learned sparse code
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Figure 4: Spike-and-slab sparse representation of the natural images. (a) Distribution
of the sparse coefficients values. Violin plots’ central lines represent mean values, with
top and bottom lines representing the extrema. For each image, this distribution was
fitted with an exponential decay (black line) y = a·exp(−b·x), with the distributions for
the parameters over the 1145 images shown in inset (b) Bayesian Information Criterion
(BIC) for the fitting of the distribution of spikes coefficients with different alternative
functions. (c) Proportion of zero coefficients per image, i.e., belonging to the ”spike” of
the distribution. (d) Same as (a), with coefficients split by different encoded orientation.

The criteria for the relevance of features encoded in neural networks is dictated by
the statistical properties of the environment itself [9, 1]. For instance, at a fundamental
representational level, the neural code for light patterns in the retina is the cumulative
sum of the Gaussian distribution of luminance found in natural images [4]. At higher
levels, scale distributions of visual features, in the Fourier domain, obey a 1/f 2 power
law, which once again echoes the power-law behavior of cortical responses [37, 38]. At
intermediate levels, the distribution of these oriented edges can be characterized along
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orientation coefficients. (c) Distribution of the concentration parameter κ for the first
(left) and second (right) peaks of the double von Mises distribution. (d) Same as (c),
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its first- and second-order moments: a median orientation, and its corresponding vari-
ance. A proper model of natural images thus depends on a proper model of both these
moments, which is reflected in the response properties of primary visual cortex neu-
rons [27]. Which of these two parameters warrants greater emphasis? Previous studies
suggested that heterogeneity on both orientation and variances arises from sparse learn-
ing processes, in silico [2] and in vivo [17].

Inherently, sparse coding enforces a prior on using a minimal number of coeffi-
cients to reconstruct an image, and is thus an encoding strategy that produces a ”spike
and slab” distribution of activations, characterized by a predominance of zero coeffi-
cients [37] (Figure 4a-c). This imposes a prior on the representation of images at the
feature-level, with a decaying exponential variation of coefficients that unfolds hetero-
geneously across different types of orientations (Figure 4d). Lower BIC indicate less
information lost in the fitting process, and thus a better fit. Such heterogeneity in fea-
ture space stems from the fact that orientations in natural images are biased to cardinal
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(i.e., vertical and horizontal) orientations [39], which is echoed at the neuronal level
by a cardinal bias in visual perception [40]. This biased distribution of orientation is
well-captured by a double von Mises distribution in orientation space (Figure 5a,b):

f(x) = A1 exp (k1 (cos (2π(x− ϕ1))− 1)) + A2 exp (k2 (cos (2π(x− ϕ2))− 1))
(10)

where A1, A2 are the amplitudes of the two von Mises distributions, k1, k2 are the con-
centration parameters for the two distributions, ϕ1, ϕ2 are the phase offsets for the two
distributions.

This distribution is known for higher heterogeneity, and thus aleatoric variance, in
natural images compared to synthetic ones [39]. At the cardinal orientations, this is
also captured by the variation of the concentration parameters (Figure 5c,d) of the von
Mises distributions, which underlies the notion that a proper description of natural im-
ages must be able to account for heterogeneous levels of aleatoric variance. This man-
dates a comparative evaluation of performance between dictionaries that emphasize a
representation based on homogeneous or heterogeneous strategies, that is, emphasizing
encoding mean features or their variances.

3.3 Heterogeneity improves resilience of the neural code
In addition to the previously described trade-off between performance and sparsity (Fig-
ure 2), the robustness of the representations can be further evaluated by modifying el-
ements in the typical activation patterns. This then allows pruning less activated co-
efficients to further increase sparseness, testing the code’s resilience to the adversarial
degradation. We pruned coefficients with absolute values below a specific threshold, it-
erating from 0.001 to 0.5 in 6 steps. This pruning led to a construction-induced increase
in sparseness, that correlated non-linearly with a decrease in PSNR for all dictionaries,
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Figure 7: Deep Neural Networks (here, ResNet18), can be trained on sparse codes.
(a) Validation accuracy (left) and losses (right) curves, for 3 different pruning levels of
coefficients for the heterogeneous variance dictionary. Each network is trained across 4
random seeds, with the mean value shown as a solid line and the contour representing
the standard deviation. (b) Same as (a), for the homogeneous variance dictionary. (c)
Same as (a), for the heterogeneous variance dictionary, post-learning.

while maintaining interpretable representations (Figure 6), The pre-learning heteroge-
neous variance dictionary’s PSNR demonstrated significantly greater resilience to co-
efficient degradation than the pre-learning homogeneous variance dictionary (p < 0.05
for pruning cutoff c > 0.3). Post-learning, both the homogeneous and heterogeneous
variance dictionaries exhibited similar PSNR, reflective of their PSNR similarities be-
fore pruning (Figure 2). This emphasizes the advantage of heterogeneous variance in
a dictionary, whether by construction or through learning, in bolstering resilience and
efficiency for encoding natural images.

Overall, these findings show that sparse codes for natural images possess highly
desirable properties when incorporating heterogeneous basis functions into a sparse
model: enhanced sparseness (Figure 2d), more evenly distributed activation (Figure 3b),
and increased resilience to code degradation (Figure 6a). Yet, the differences in PSNR
may not necessarily translate to perceptible differences in image quality, depending on
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Table 1: Mean top-1 accuracy (in %) ± standard deviation across 4 random initialization
of ResNet-18 for varying sparse encoding schemes of CIFAR-10. c = 0.25 and c = 0.5
indicate the pruning level of the sparse coefficients, as done in Figure 6.

Encoding scheme No pruning c=0.25 c=0.5

Homogeneous, pre-learning 70.65± 0.30 69.70± 0.26 67.83± 0.47

Homogeneous, post-learning 67.31± 0.20 66.24± 0.01 67.40± 0.12

Heterogeneous, pre-learning 75.08± 0.10 71.81± 0.41 65.20± 0.40

Heterogeneous, post-learning 79.20± 0.11 78.98± 0.00 79.26± 0.02

the context and application [41]. As such, it is necessary to investigate the potential of
employing such codes in objective visual processing problems, for example, in image
classification.

As a coarse analogy to a neuromorphic hierarchical sparse construction of visual
processing [22, 42, 23], we trained a deep convolutional neural network to classify
the sparse codes of natural images. The CIFAR-10 dataset, which was converted to
grayscale in order to match the dimensionality of the dictionaries previously described,
was sparse-coded and then classified using the Resnet-18 network, reaching a maximum
top-1 accuracy of 79.20% in 100 epochs (Figure 7, Table 3.3). After sparse coding of
the dataset, but without pruning of the coefficients, a learned dictionary initialized with
a heterogeneous orientation variance basis achieved the highest classification accuracy
(79.20%). This was followed by the pre-learned version of the network (75.08%), and
was higher than homogeneous variance methods. Following degradation of the sparse
code (c = 0.5), the post-learned heterogeneous variance kept similarly high perfor-
mance, unlike all the other encoding scheme which showed loss of performance. The
discrepancy between the deep learning performance and the previously noted similar-
ities in PSNR and sparseness (Figure 2) underscores the significance of representing
variance of low-level features in complex visual models.

Discussion
Neural systems leverage heterogeneity for increased computational efficiency [43, 44].
Here, we have explored the effects of such heterogeneous encoding of orientation vari-
ance by integrating it into a convolutional sparse coding dictionary. Our findings show
that this outperforms conventional feature-representing dictionaries with fixed vari-
ance, both in sparsity and robustness, at the cost of reconstruction performance. How-
ever, these representations can be effectively employed in subsequent visual processing
stages, where they result in significantly improved performances of deep convolutional
neural networks. Overall, these results imply that incorporating variance in sparse cod-
ing dictionaries can substantially improve the encoding and processing of natural im-
ages.

The connection between sparse models and neural codes, which underlies the mo-
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tivation behind this approach, could be further showcased using biologically plausible
algorithms, such as the Locally Competitive Algorithm (LCA) [45]. Rather than enforc-
ing sparsity through convolution as done here, this model uses a mechanism of recipro-
cal inhibition between each of its elements, a process that mimics particular recurrent
inhibition connectivity patterns observed in the cortex [46]. This method potentially
mirrors a neural adaptation of winner-takes-all algorithms, reflecting innate competi-
tion and selective activation within neural networks, and highlights the potential role
of feedback loops to improve sparse coding [47]. Under this analogy, LCA could re-
inforce the presented framework of heterogeneity by extending it from features space
(i.e., receptive fields) to also include the connectivity matrix (i.e., synaptic weights).
In terms of hardware, the use of variance weighting by such a lateral inhibition mech-
anism could provide dynamic computational allocation for significant, unpredictable
fluctuations in the data, while reducing or bypassing routine, predictable data streams.
This arguably reflects the response characteristics and dynamics of cortical neurons [15,
16]. Emphasizing these pronounced shifts could streamline the data transmitted across
physical channels, addressing a primary source of thermal and computational efficiency
bottlenecks in neuromorphic hardware [48, 49].

In the context of image classification, we used sparse coding to achieve a top-1 ac-
curacy of 79.20% on the CIFAR-10 dataset. While this falls short of the state-of-the-art
performance exceeding 99.0% accuracy using color images and transformer architec-
tures [50], it is important to note that our primary objective centered on comparing
model performance with heterogeneous degree of variance in the initial layer, rather
than solely pursuing state-of-the-art results. While this aim here was to use deep learn-
ing as a simple model to demonstrate the usefulness of variance in complex compu-
tational contexts, direct integration of sparse coding with deep neural networks is a
promising avenue of research, and further experiments should be carried on modern
architectures, such as vision transformers [50].

Some research has emphasized the ability of sparse coding to generate succinct,
high-level representations of inputs, especially when applied as a pre-processing step
for unsupervised learning with unlabeled data using L1-regularized optimization algo-
rithms [51]. In several instances, the mechanism of sparse coding has been seamlessly
integrated into deep networks. For instance, the Deep Sparse Coding framework [52]
maintains spatial continuity between adjacent image patches, boosting performance in
object recognition. Likewise, a face recognition technique combining sparse coding
neural networks with softmax classifiers effectively addresses aleatoric uncertainties,
including changes in lighting, expression, posture, and low-resolution scenarios [53].
Classifiers relying on sparse codes, produced by lateral inhibition in an LCA, exhibit
strong resistance to adversarial attacks [54]. This resilience, potentially enhanced by
heterogeneous dictionaries as explored here, offers a promising avenue for research in
safety-critical applications.

The empirical evidence presented here can be interpreted as an implicit Bayesian
process, wherein initial beliefs about the coefficients are updated using input images to
learn the variance of visual features to represent optimally (sparse) orientations. Mod-
els with explicit integration of both model and input variance have distinct advantages
in that sense. Namely, this allows to maximize model performance and minimizing
decision uncertainty. In contrast, we here focused on an implicit understanding of this
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relationship, demonstrating through a simple approach that vision models can benefit
from factoring-in feature variance without explicit learning rules.
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Appendix A - Additional Convolutional Sparse Coding
details
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Appendix A Figure 1: Parametrization of the CSC learning algorithm. λ was varied in
8 steps in a [0.001 : 0.1] range, max iteration in 5 steps in a [10 : 1000] range, relaxation
parameter ρ in 8 steps in a [0.2 : 1.8] range, filter size in 8 steps in a [5 : 21] pixels range
and K in 8 steps in a [89 : 2351] range.

Convolutional Sparse Coding was implemented using an Alternating Direction Method
of Multipliers (ADMM) algorithm, which decomposes the problem into a standard
form:

argmin
x,y

f(x) + g(y) (11)

with the constraint x = y. This is then solved iteratively by alternating between the two
sub-problems:

xi+1 = argmin
x

f(x) +
ρ

2
||x+ yi + ui||22 (12)

yi+1 = argmin
y

g(y) +
ρ

2
||xi+1 + y + ui||22 (13)

where ρ is a penalty parameter that controls the convergence rate of the iterations, also
called the relaxation parameter. x and y are residuals whose equality is enforced by the
prediction error:

ui+1 = ui + xi+1 + yi+1 (14)
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ADMM can be readily applied to equation (2) by introducing an auxiliary variable
Y [55], such that the problem to solve becomes:

argmin
{xk},{yk}

1

2
||

K∑
k=1

dk ∗ xk − s||22 + λ

K∑
k=1

||yk||1 s.t. xk =yk (15)

which, following the ADMM alternation in equations (12)-(14), is solved by alternat-
ing:

{xk}i+1 = argmin
{xk}

1

2
||

K∑
k=1

dk ∗ xk − s||22 +
ρ

2
||xk − yk,i + uk,i||22 (16)

{yk}i+1 = argmin
{yk}

λ
K∑
k=1

||yk||1 +
ρ

2
||xk,i+1 − yk + uk,i||22 (17)

uk,i+1 = uk,i + xk,i+1 − yk,i+1 (18)
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Appendix B - Homogeneous variance dictionary
Results from the main text are shown here for the homogeneous variance dictionary,
post-learning.
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Appendix B Figure 1: Learning balances coefficient distribution. (a) Kernel density
estimation of coefficients over θ0 and Bθ after learning from the homogeneous variance
dictionary. (b) Sparseness of coefficients for each Bθ. Sparseness = 1 is represented as
a gray dashed line.
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Appendix B Figure 2: Sparse coefficients can be pruned to boost sparsity. (a) Pruning
of the coefficients based on their values and resulting sparseness/PSNR for both dictio-
naries. (b) Reconstruction of the image shown in Figure 1 with different cutoff levels.
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